
Background: PaaS Clouds
Platform as a Service (PaaS) clouds provide abstraction of the software
and hardware stack. Users just upload their code; the cloud then makes
the application available online automatically. CloudFoundry is open
source PaaS software that IBM Bluemix uses; we run our experiments
on it.

Resource Intensiveness of Applications
PaaS clouds can place tenants on the same VM, which makes them
able to affect the performance of each other—constrained by certain
Service Level Agreements (SLAs). We quantify the slowdown of
applications on the presence of specific resource-intensive tenants we
call Cloud Burners, which allows resource-intensiveness profiling:

Predicting Throughput after Scaling

Scaling out adds instances; scaling up increases the resources of the
current instances. Both types of scaling increase the CPU shares a
tenant gets; however, this is does not necessarily lead to linear
performance improvements We propose and evaluate a theoretical
model that predicts CPU utilization of tenants depending on the activity
of their neighbors.

Improving PaaS Multitenancy

Fair and Anti-Interference Multitenancy
Since PaaS tenants interfere with each other, we are investigating a
placement heuristic based on our resource slowdown and interference
profiling. Initial experimental results compared all 10 possible placements
of 6 tenants on 2 VMs; our heuristically derived plan was the second
most performant and the second most fair.

Resident Memory Reduction

PaaS tenants can utilize idleness
periods to perform clean up tasks and
also, reduce their resource consump-
tion, which enables other tenants run-
ning on the same VM to utilize them
and improve their performance.

Faster Scaling and Reduced Downtime

When a PaaS appli-
cation starts for the
first time, it creates
some dynamically
compiled data. By
sharing this data
among instances, we
reduce the startup
and warmup time dur-
ing scaling or restart-
ing.

The Cloud CG App

We implemented a PaaS
cloud application that
stresses the Garbage Col-
lector, which is a major
bottleneck for any managed
runtime, by performing
graph actions with cus-
tomizable ratios. It can be
used to simulate multiple
types of mutator patterns.

Also, in conjunction with its GUI, it can be utilized as an academic tool to
demonstrate the effects of operations on the heap in real-time.

Panagiotis (Panos) Patros, Dayal Dilli, 
Stephen A. MacKay, Kenneth B. Kent, Michael Dawson

University of New Brunswick, IBM Canada
Faculty of Computer Science

{patros.panos, stephen.mackay, dayal.dilli, ken}@unb.ca
Michael_Dawson@ca.ibm.com

1
2

0

1
2

1

1
2

2

1
2

3

1
2

4

1
2

5

1
2

6

1
2

7

1
2

8

1
2

9

1
3

0

1
3

1

1
3

2

1
3

3

1
3

4

1
3

5

1
3

6

1
3

7

1
3

8

1
3

9

0

2

4

6

8

10

12

14

Throughput

Optimized
Default

Time (s)

R
e

q
u

e
st

s 
p

e
r 

se
co

n
d


